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Abstract In this paper we address the problem of locating a new facility on a d-
dimensional space when the distance measure (�p- or polyhedral-norms) is different
at each one of the sides of a given hyperplane H. We relate this problem with the
physical phenomenon of refraction, and extend it to any finite dimensional space
and different distances at each one of the sides of any hyperplane. An application
to this problem is the location of a facility within or outside an urban area where
different distance measures must be used. We provide a new second order cone pro-
gramming formulation, based on the �p-norm representation given in Blanco et al.
(Comput Optim Appl 58(3):563–595, 2014) that allows to solve the problem in any
finite dimensional space with second order cone or semidefinite programming tools.
We also extend the problem to the case where the hyperplane is considered as a
rapid transit media (a different third norm is also considered over H) that allows
the demand to travel, whenever it is convenient, through H to reach the new facil-
ity. Extensive computational experiments run in Gurobi are reported in order to
show the effectiveness of the approach. Some extensions of these models are also
presented.
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1 Introduction

In the literature of transportation research it is frequent to address routingor distribution
problems where the movement between points is modeled by the combination of
different transportation modes, as for instance a standard displacement combined with
several high speed lines. Similar approaches have been also applied in some location
problems [9] considering thatmovements can be performed in a continuous framework
or taking advantage of a rapid transit line modeled by an embedded network; and
different applications of these models are mentioned in the location literature. For
instance, the location of a facility within or outside an urban area where, due to the
layout of the streets within the city boundary, the movement is slow, while outside this
boundary in the rural area movement is fast. Another possible application, mentioned
by Brimberg et al. [6] could be in a region where, due to the configuration of natural
barriers or borders, there is a distinct change in the orientation of the transportation
network, as for instance in the southern area of Ontario.

Location problems are among the most important applications of Operation
Research. Continuous location problems appear very often in economic models of
distribution or logistics, in statistics when one tries to find an estimator from a data
set or in pure optimization problems where one looks for the optimizer of a certain
function. For a comprehensive overview of Location Theory, the reader is referred to
[10] or [21]. Most of the papers in the literature devoted to continuous facility location
consider that the decision space is Rd , endowed with a unique distance. We consider
here the problem where R

d is split by a hyperplane H = {x ∈ R
d : αt x = β} for

some α ∈ R
d and β ∈ R, into two regions HA and HB , with sets of demand points A

and B, respectively. Each one of these regions is endowed with a (possibly different)
norm ‖ · ‖A and ‖ · ‖B , respectively, to measure the distance within the correspond-
ing region. For the ease of presentation we will restrict ourselves to consider that the
involved norms are �p, p > 1, or polyhedral. Recall that a polyhedral (or block)
norm is characterized by a unit ball being a polytope symmetric with respect to the
origin and with non empty interior. The only �p-norms that are polyhedral are the
well-known �1- and �∞-norm. Therefore, we deal with the problem of finding the
location of a new facility such that the overall sum of the weighted distances from the
demand points is minimized. This setting induces a transportation pattern where, in
each side of the hyperplane, the motion goes at a different speed. This problem is not
new andwe can find antecedents in the literature in the papers by Parlar [18], Brimberg
et al. [6,7], Fathaly [14], among others, and it can be seen as a natural generalization
of the classical Weber’s problem (see [13,20]). Note that the distances between two
points, depending on the regionwhere they are located,may bemeasuredwith different
norms. Hence, the distance between two points x and y is ‖x − y‖A (resp. ‖x − y‖B)
if they belong to HA (resp. to HB), or the length of the shortest weighted path between
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Continuous location under the effect of ‘refraction’ 35

them otherwise. We point out that in this setting if two points x and y are in the same
half-space, it is not allowed to traverse the hyperplane on paths connecting them. The
reader is referred to Sect. 6.2 for the analysis of this latter case. Related problems have
been analyzed in [1,3,5,8,22,23,25], among others. In order to address this location
problem, first we have to solve the question of computing the shortest path between
points in different regions since our goal is to optimize a globalizing function of the
length of those paths. We note in passing that some partial answers in the plane and
particular choices of distances can be found in [15].

This problem is closely relatedwith the physical phenomenon of refraction. Refrac-
tion describes the process that occurs when the light changes the medium, and then
the phase velocity of a wave is changed. This effect is also observed when sound
waves pass from one medium into another, when water waves move into water of a
different depth or, as in our case, when a traveler moves between opposite sides of the
separating hyperplane. Snell’s law states that for a given pair of media and a planar
wave with a single frequency, there is a ratio relationship between the sines of the
angle of incidence θA and the angle of refraction θB and the indices of refraction nA

and nB of the media: nA sin θA = nB sin θB (see Fig. 1). This law is based on Fermat’s
principle that states that the path followed by a light ray between two points is the one
that takes the least time. As a by-product of the results in this paper, we shall find an
extension of this law that also applies to transportation problems when more than one
transportation mode is present in the model.

Our goal in this paper is to design an approach to solve the above mentioned
family of location problems, for any combination of norms and in any dimension.
Moreover, we show an explicit formulation of these problems as second order cone
programming (SOCP) problems (see [2] for further details) which enables the usage
of standard commercial solvers to solve them.

The paper is organized in seven sections. In Sect. 2 we analyze the problem of
computing shortest paths between pairs of points separated by a hyperplane H when
the distance measure is different in each one of the half-spaces defined by H. We

Fig. 1 Illustration of Snell’s law
on the plane
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36 V. Blanco et al.

characterize the crossing (gate) points where a shortest path intersects the hyperplane,
generalizing the well-known refraction principle (Snell’s Law) for any dimension and
any combination of �p-norms. Section 3 analyzes location problems with distance
measures induced by the above shortest paths. We provide a compact mixed-integer
second order cone formulation for this problem and a transformation of that formu-
lation into two continuous SOCP problems. In Sect. 4 the problem is extended to the
case where the hyperplane is endowed with a third norm and thus, it can be used
to reduce the length of the shortest paths between regions. Section 5 is devoted to
the computational experiments. We report results for different instances. We begin
comparing our approach for the first model, with those presented (on the plane and
for �1- and �2-norms) in [18] and [27] by using the data sets given there; then we
test our methodology using the 50-points data set in [12] (on the plane and different
combinations of �p-norms, both for the first and the second model); and finally we
run a randomly generated set of larger instances (5000, 10,000 and 50,000 demand
points) for different dimension (2, 3 and 5) and different combinations of �p-norms.
Section 6 is devoted to some extensions of the previous model. The paper ends, in
Sect. 7, with some conclusions and an outlook for further research.

2 Shortest paths between points separated by a hyperplane

Let us assume that Rd is endowed with two �pi -norms each one in the corresponding
half-space Hi , i ∈ {A, B} induced by the hyperplane H = {x ∈ R

d : αt x = β}. Let
us write αt = (α1, . . . , αd) and assume further that pi = ri/si with ri , si ∈ N\{0} and
gcd(ri , si ) = 1, i ∈ {A, B}. Here, ‖z‖p stands for the �p norm of z ∈ R

d .
We are given two points a, b ∈ R

d such that αt a < β and αt b > β, with weights
ωa , ωb respectively and a generic (but fixed) point x∗ = (x∗

1 , . . . , x
∗
d )

t such that
αt x∗ = β.

The following result characterizes the point x∗ that provides the shortest weighted
path between a with weight ωa > 0 and b with weight ωb > 0 using their correspond-
ing norms in each side of H.

Lemma 1 If 1 < pA, pB < +∞, the length dpA pB (a, b) of the shortest weighted
path between a and b is

dpA pB (a, b) = ωa‖x∗ − a‖pA + ωb‖x∗ − b‖pB ,

where x∗ = (x∗
1 , . . . , x

∗
d )

t , αt x∗ = β must satisfy the following conditions:

1. For all j such that α j = 0:

ωa

[ |x∗
j − a j |

‖x∗ − a‖pA

]pA−1

sign(x∗
j − a j ) + ωb

[ |x∗
j − b j |

‖x∗ − b‖pB

]pB−1

sign(x∗
j − b j ) = 0.
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Continuous location under the effect of ‘refraction’ 37

2. For all i, j such that αiα j �= 0.

ωa

[ |x∗
i − ai |

‖x∗ − a‖pA

]pA−1 sign(x∗
i − ai )

αi
+ ωb

[ |x∗
i − bi |

‖x∗ − b‖pB

]pB−1 sign(x∗
i − bi )

αi

= ωa

[ |x∗
j − a j |

‖x∗ − a‖pA

]pA−1 sign(x∗
j − a j )

α j
+ ωb

[ |x∗
j − b j |

‖x∗ − b‖pB

]pB−1 sign(x∗
j − b j )

α j
.

Proof Computing dpA pB (a, b) reduces to solving the following problem:

min
x :αt x=β

ωa‖x − a‖pA + ωb‖x − b‖pB .

The above problem is a convex minimization problem with a linear constraint.
Consider theLagrangian function L(x, λ) = ωa‖x−a‖pA+ωb‖x−b‖pB +λ(αt x−β).
Then necessary and sufficient optimality conditions read as:

ωa

[ |x j − a j |
‖x − a‖pA

]pA−1

sign(x j − a j ) + ωb

[ |x j − b j |
‖x − b‖pB

]pB−1

× sign(x j − a j ) + λα j = 0, j = 1, . . . , d

αt x − β = 0.

First of all, if α j = 0 we obtain condition 1 from the first set of equations. Next, if
λα j �= 0 the above system gives rise to condition 2. ��

In the case where one of the two norms involved is not strict, i.e. pA or pB ∈
{1,+∞} there are non-differentiable points besides the origin and the optimality
condition is obtained using subdifferential calculus. Let us denote by ∂ f (x) the sub-
differential set of f at x .

Lemma 2 If pA = +∞ or pB = 1, the length dpA pB (a, b) of the shortest weighted
path between a and b is

dpA pB (a, b) = ωa‖x∗ − a‖pA + ωb‖x∗ − b‖pB ,

where x∗ = (x∗
1 , . . . , x

∗
d )

t , αt x∗ = β must satisfy:

λα ∈ ωa∂‖x∗ − a‖pA + ωb∂‖x∗ − b‖pB , for some λ ∈ R.

Proof The result follows from applying the rules of subdifferential calculus (see [24])
to the shortest path problem between a and b with the distance measure dpA pB . ��

Wenote in passing that the optimality condition inLemma2gives rise,whenever pA
or pB are specified, to usable expressions. In particular, if both pA and pB ∈ {1,+∞}
the resulting problem is linear and the condition is very easy to handle. Lemmas 1
and 2 extend the results in [15] to the case of general norms and any finite dimension
greater than 2.
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Fig. 2 Illustrative example of the generalized sines

Next consider the following embedding π : Rd → R
d+1, π(x) = (x, αt x − β),

for x ∈ R
d . Take any point x∗ such that αt x∗ = β. Clearly, π(a) = (a, αt a − β),

π(x∗) = (x∗, 0) and π(H) = H × {0}. Then, let us denote by γa the angle between
the vectors π(a − x∗) = (a − x∗, 0) and (a − x∗, αt a − β). Now, we can interpret

|αt a−β|
‖a−x∗‖pA

as a generalized sine of the angle γa (see Fig. 2). The reader may note that

in general this ratio is not a trigonometric function, unless pi = 2, i ∈ {A, B}. This
way we define by abusing of notation

sinpA γa = |αt a − β|
‖a − x∗‖pA

(
analogously sinpB γb = |αt b − β|

‖b − x∗‖pB

)
.

The above expression can be written by components, namely:

sinpA γa =
∣∣∣∣∣∣

d∑
j=1

α j a j − α j x∗
j

‖a − x∗‖pA

∣∣∣∣∣∣ , (observe that αt x∗ = β). (1)

Finally, by similarity we shall denote the non-negative value of each component in
the previous sum as

sinpA γa j := |α j a j − α j x∗
j |

‖a − x∗‖pA
, j = 1, . . . , d.

With the above convention we can state a result that extends the well-known Snell’s
Law to this framework. It relates the gate point x∗ in the hyperplane αt x = β between
two points a and b in terms of the generalized sine (1) of the angles γa and γb.

Corollary 3 (Snell’s-like result) The point x∗ = (x∗
1 , . . . , x

∗
d )

t , αt x∗ = β that defines
the shortest weighted path between a and b is determined by the following necessary
and sufficient conditions:

1. For all j such that α j = 0:

ωa

[ |x∗
j − a j |

‖x∗ − a‖pA

]pA−1

sign(x∗
j − a j ) + ωb

[ |x∗
j − b j |

‖x∗ − b‖pB

]pB−1

sign(x∗
j − b j ) = 0.
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Continuous location under the effect of ‘refraction’ 39

2. For all i, j, αiα j �= 0.

ωa

[
sinpA γai

|αi |
]pA−1 sign(x∗

i − ai )

αi
+ ωb

[
sinpB γbi

|αi |
]pB−1 sign(x∗

i − bi )

αi

= ωa

[
sinpA γa j

|α j |
]pA−1 sign(x∗

j − a j )

α j
+ ωb

[
sinpB γb j

|α j |
]pB−1 sign(x∗

j − b j )

α j
,

Corollary 4 (Snell’s Law) If d = 2, pA = pB = 2 and H = {(x1, x2) ∈ R
2 :

α1x1 + α2x2 = β} with α1, α2, β ∈ R, the point x∗ satisfies that

ωa sin θa = ωb sin θb,

where θa and θb are: 1) if α1 ≤ α2, the angles between the vectors a − x∗ and
(−α2, α1)

t , and b − x∗ and (α2,−α1)
t , or 2) if α1 > α2, the angles between the

vectors a − x∗ and (α2,−α1)
t , and b − x∗ and (−α2, α1)

t .

Proof Since for d = 2 the �2-norm is isotropic, we can assume w.l.o.g. that the
separating line is x2 = 0. Thus, after a change of variable x∗ can be taken as the origin
of coordinates and a = (a1, a2) such that a1 ≥ 0, a2 < 0, b = (b1, b2) such that
b1 ≤ 0, b2 > 0.

Next, the optimality condition using Lemma 1 is ωa
|a1|‖a‖2 − ωb

|b1|‖b‖2 = 0. The result

follows since sin θa = |a1|‖a‖2 and sin θb = |b1|‖b‖2 . ��

3 Location problems with demand points in two media separated
by a hyperplane

In this section we analyze the problem of locating a new facility to serve a set of
given demand points which are classified into two classes, based on a separating
hyperplane. The peculiarity of the model is that different norms to measure distances
may be considered within each one of the half-spaces induced by the hyperplane.

Let A and B be two finite sets of given demand points in R
d , and ωa and ωb be

the weights of the demand points a ∈ A and b ∈ B, respectively. ConsiderH = {x ∈
R
d : αt x = β} to be the separating hyperplane in R

d with α ∈ R
d and β ∈ R, and

HA = {x ∈ R
d : αt x ≤ β} and HB = {x ∈ R

d : αt x > β}.

We assume that Rd is endowed with a mixed norm such that the distance measure
in HA is induced by a norm ‖ · ‖pA , the distance measure in HB is induced by the
norm ‖ · ‖pB and pA ≥ pB . We assume further that pi = ri/si , with ri , si ∈ N\{0}
and gcd(ri , si ) = 1, i ∈ {A, B} and that the distance between two points inside HA

(resp. HB) is measured with the norm in HA (resp. HB).
Observe that the hypothesis that pA ≥ pB ensures that moving through HA is at

least as fast as moving within HB .
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40 V. Blanco et al.

The goal is to find the location of a single new facility in Rd so that the sum of the
distances from the demand points to the new facility is minimized. The problem can
be stated as:

f ∗ := inf
x∈Rd

∑
a∈A

ωa dpA,pB (x, a) +
∑
b∈B

ωb dpA,pB (x, b) (P)

where for two points x, y ∈ R
d , dpA,pB (x, y) is the length of the shortest path between

x and y, as determined by Lemmas 1 and 2.
Note that the shortest paths can be explicitly described by distinguishing whether

the new location is in HA or HB . Let x ∈ R
d and z ∈ A ∪ B, then:

dpA,pB (x, z) =
{ ‖x − z‖pi x, z ∈ Hi , i ∈ {A, B}
min
y∈H ‖y − z‖pi + ‖x − y‖p j if x ∈ H j , z ∈ Hi , i, j ∈ {A, B}, i �= j.

Theorem 5 Assume that min{|A|, |B|} > 2. If the points in A or B are not collinear
and pA < +∞, pB > 1 then Problem (P) always has a unique optimal solution.

Proof Let us define the function f (x, y) : Rd×(|A|+|B|)d → R as:

f (x, y) =

⎧⎪⎪⎨
⎪⎪⎩

f≤(x, y) :=
∑
a∈A

ωa‖x − a‖pA +
∑
b∈B

ωb‖x − yb‖pA +
∑
b∈B

ωb‖yb − b‖pB if αt x ≤ β

f>(x, y) :=
∑
a∈A

ωa‖ya − a‖pA +
∑
a∈A

ωa‖x − ya‖pB +
∑
b∈B

ωb‖x − b‖pB if αt x > β.

It is clear that

f ∗ = min{
(SP≤)︷ ︸︸ ︷

inf
αt x≤β,αt yb=β,∀b∈B

f≤(x, y),

(SP>)︷ ︸︸ ︷
inf

αt x>β,αt ya=β,∀a∈A
f>(x, y)}.

We observe that both functions, namely f≤ and f> are continuous and coercive.
This implies that infαt x≤β,αt yb=β,∀b∈B f≤(x, y) is attained since the domain is closed
and bounded from below. Thus a solution for this subproblem always exists.Moreover,
we prove that f≤ is strictly convex which in turn implies that the solution of the first
subproblem (SP≤) is unique.

Indeed, let (x, y), (x ′, y′) be two points in the domain of f≤ and 0 < λ < 1.

f≤(λx + (1 − λ)x ′, λy + (1 − λ)y′)
=

∑
a∈A

ωa‖λx + (1 − λ)x ′ − a‖pA

+
∑
b∈B

ωb‖λx + (1 − λ)x ′ − λyb − (1 − λ)y′
b‖pA

+
∑
b∈B

ωb‖λyb + (1 − λ)y′
b − b‖pB
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Continuous location under the effect of ‘refraction’ 41

(A not collinear and pA > 1)

<
∑
a∈A

ωa(λ‖x − a‖pA + (1 − λ)‖x ′ − a‖pA )

+
∑
b∈B

ωb(λ‖x − yb‖pA + (1 − λ)‖x ′ − y′
b‖pA )

+
∑
b∈B

ωb(λ‖yb − b‖pB + (1 − λ)‖y′
b − b‖pB )

= λ f≤(x, y) + (1 − λ) f≤(x ′, y′).

The analysis of the second subproblem is different since the domain is not closed.
First, analogously to the above proof it follows that f> is strictly convex in its domain,
namely αt x > β, αt ya = β, ∀a ∈ A. Therefore, if the infimum is attained (in the
interior of HB) the solution must be unique. Next, we will prove that if the inf of the
second subproblem is not attained then it cannot be an optimal solution of Problem
(P) since there exists another point in αt x ≤ β, αt yb = β, ∀b ∈ B with a smaller
objective value.

Let us assume that no optimal solution of (SP>) exists. This implies that the infimum
is attained at the boundary of HB and therefore there exists (x̄, ȳ), αt x̄ = β such that

inf
αt x>β,αt ya=β,∀a

f>(x, y) = f>(x̄, ȳ).

Next,

f>(x̄, ȳ) =
∑
a∈A

ωa‖ȳa − a‖pA +
∑
a∈A

ωa‖x̄ − ȳa‖pB +
∑
b∈B

ωb‖x̄ − b‖pB

≥
∑
a∈A

ωa‖ȳa − a‖pA +
∑
a∈A

ωa‖x̄ − ȳa‖pA +
∑
b∈B

ωb‖x̄ − b‖pB

≥
∑
a∈A

ωa‖x̄ − a‖pA +
∑
b∈B

ωb‖x̄ − b‖pB . (∗)

Now, since x̄ ∈ H, let B1 := {b ∈ B : ωb‖x̄ − b‖pB ≥ ωb‖b − ȳb‖pB +
ωb‖x̄ − ȳb‖pA } and B2 = B\B1. (Observe that ȳb = x̄ for all b ∈ B2 and then∑

b∈B2 ωb‖x̄ − ȳb‖pA = 0.) This allows us to bound from below (∗) as follows:

(∗) ≥
∑
a∈A

ωa‖x̄ − a‖pA +
∑
b∈B1

ωb‖x̄ − ȳb‖pA +
∑
b∈B1

ωb‖b − ȳb‖pB

+
∑
b∈B2

ωb‖x̄ − b‖pB

=
∑
a∈A

ωa‖x̄ − a‖pA +
∑
b∈B

ωb‖x̄ − ȳb‖pA

+
∑
b∈B1

ωb‖b − ȳb‖pB +
∑
b∈B2

ωb‖ȳb − b‖pB
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42 V. Blanco et al.

=
∑
a∈A

ωa‖x̄ − a‖pA +
∑
b∈B

ωb‖x̄ − ȳb‖pA +
∑
b∈B

ωb‖b − ȳb‖pB

= f≤(x̄, ȳ).

Hence, (x̄, ȳ) provides a smaller or equal objective value evaluated in (SP≤)which
concludes the proof. ��

The above description of the distances allows us to formulate Problem (P) as a
mixed integer nonlinear programming problem by introducing an auxiliary variable
γ ∈ {0, 1} that identifies whether the new facility belongs to HA, which in fact is equal
to HA, or HB .

Theorem 6 Problem (P) is equivalent to the following problem:

min
∑
a∈A

ωa Za +
∑
b∈B

ωbZb (2)

s.t. za − Za ≤ Ma(1 − γ ), ∀a ∈ A, (3)

θa + ua − Za ≤ Ma γ, ∀a ∈ A, (4)

zb − Zb ≤ Mb γ, ∀b ∈ B, (5)

θb + ub − Zb ≤ Mb (1 − γ ), ∀b ∈ B, (6)

za ≥ ‖x − a‖pA , ∀a ∈ A, (7)

θa ≥ ‖x − ya‖pB , ∀a ∈ A, (8)

ua ≥ ‖a − ya‖pA , ∀a ∈ A, (9)

zb ≥ ‖x − b‖pB , ∀b ∈ B, (10)

θb ≥ ‖x − yb‖pA , ∀b ∈ B, (11)

ub ≥ ‖b − yb‖pB , ∀b ∈ B, (12)

αt x − β ≤ M(1 − γ ), (13)

αt x − β ≥ −Mγ, (14)

αt ya = β, ∀a ∈ A, (15)

αt yb = β, ∀b ∈ B, (16)

Za, za, θa, ua ≥ 0, ∀a ∈ A, (17)

Zb, zb, θb, ub ≥ 0, ∀b ∈ B, (18)

ya, yb ∈ R
d , ∀a ∈ A, b ∈ B, (19)

γ ∈ {0, 1}. (20)

with M, Ma, Mb > 0 sufficiently large constants for all a ∈ A, b ∈ B.

Proof Let us introduce the auxiliary variable γ =
{
1 if x ∈ HA,

0 if x ∈ HB,
that models

whether the location of the new facility x is in HA or in the closure of HB . (Observe
that if x ∈ HA ∩HB = H, γ can assume both values.) Note that constraints (13),(14)
and (20) assure the correct definition of this variable. Next, we define the auxiliary

123



Continuous location under the effect of ‘refraction’ 43

variables Za ∀a ∈ A and Zb ∀b ∈ B that represent the shortest path length from the
new location at x to a ∈ A and b ∈ B, respectively. Similarly, with za and zb we shall
model ‖x − a‖pA and ‖x − b‖pB , respectively.

We shall prove the case x ∈ HA, since the case x ∈ HB follows analogously when
γ = 0. In case x ∈ HA (being then γ = 1), let us denote with θb the distance between
x and the gate point, yb, of b onH, namely θb = ‖x − yb‖pA ; and with ub the distance
between yb and b, ub = ‖b− yb‖pB for all b ∈ B (16). Since γ = 1, the minimization
of the objective function and constraints (3)–(6) and (7), (11) and (12) assure that the
variables are well-defined and that:

Za = za = ‖x − a‖pA and Zb = θb + ub = ‖x − yb‖pA + ‖b − yb‖pB .

Hence, the minimum value of
∑

a∈A ωa Za +∑
b∈B ωbZb is the overall sum of the

shortest paths distances between x and the points in A ∪ B. ��
The reader may note that valid choices of the M, Ma, Mb constants that

appear in the formulation (2)–(20) can be easily obtained. Indeed, by standard
arguments one can prove that it suffices to take the big-M constants, in the above
formulation, as Mc = 4maxa∈A, b∈B{‖a‖pA , ‖b‖pB } ∀ c ∈ A ∪ B and M =
2maxp∈{pA,pB } ‖α‖p maxa∈A, b∈B{‖a‖pA , ‖b‖pB } + β. (We note in passing that the
proposed values are valid upper bounds although some smaller values may also work.)
In spite of that, the above formulation may not be the more appropriate way to solve
Problem (P) since one can take advantage of the following fact.

Observe that the hyperplane H induces the decomposition of Rd into R
d = HA ∪

HB , and such that HA ∩ HB = H. Moreover, using the result in Theorem 5, Problem
(P) is equivalent to solve two problems, restricting the solution x to be in HA and in
HB .

Theorem 7 Let x∗ ∈ R
d be the optimal solution of (P). Then, x∗ is the solution of

one of the following two problems, (PA) or (PB):

min
∑
a∈A

ωaza +
∑
b∈B

ωbθb +
∑
b∈B

ωbub (PA)

s.t. (7), (11), (12), (16),

αt x ≤ β, (21)

za ≥ 0, ∀a ∈ A,

θb, ub ≥ 0, ∀b ∈ B,

x, yb ∈ R
d .

min
∑
b∈B

ωbzb +
∑
a∈A

ωaθa +
∑
a∈A

ωaua (PB)

123



44 V. Blanco et al.

s.t. (8), (9), (10), (15),

αt x ≥ β, (22)

zb ≥ 0, ∀b ∈ B,

θa, ua ≥ 0, ∀a ∈ A,

x, ya ∈ R
d .

Proof Let x∗ be the optimal solution of (P). By Theorem 6, x∗ must be the optimal
solution of (2)–(20). Hence, we can distinguish two cases: (a) x∗ ∈ HA; or (b) x∗ ∈
HB . First, let us analyze case (a). Since x∗ ∈ HA, then γ ∗ = 1. Hence, the non-
redundant constraints in (P) are (16), (21), (7), (11) and (12), and the variables Za and
Zb in (P) reduce to za and θb + ub, respectively. The above simplification results in
the formulation of Problem (PA).

For case (b), the proof follows in the same manner. The reader may note that the
hyperplane H is considered in both problems. However, by the proof of Theorem 5,
if x∗ is inH, since we assume that pA ≥ pB , the optimal value of (PA) is not greater
than the optimal value of (PB) and the solution can be considered to belong to HA.

��
From theorems 5 and 7 we get the following result that gives an interesting local-

ization property about the solutions of the problem [(PA) or (PB)] whichever one has
the best objective value.

Theorem 8 Let (x∗, y∗) ∈ R
d×|B|d be the optimal solution of (PA) and (x̂, ŷ) ∈

R
d×|A|d be the optimal solution of (PB), with objective values f ∗ and f̂ , respectively.

If f ∗ > f̂ (resp. f ∗ < f̂ ), y∗
b = y∗

b′ = x∗, for all b, b′ ∈ B (resp. ŷa = ŷa′ = x̂ , for

all a, a′ ∈ A). Moreover, if f ∗ = f̂ , y∗
b = y∗

a = x∗ = x̂ , ∀a ∈ A, b ∈ B.

As we mentioned before, the cases where the norms used to measure distances are
�p-norms, p ∈ Q, 1 < p < +∞, are very important and their corresponding models
simplify further. In what follows, we give explicit formulations for these problems.

Theorem 9 Let ‖ · ‖pi be an �pi -norm with pi = ri
si

> 1, ri , si ∈ N\{0}, and
gcd(ri , si ) = 1 for i ∈ {A, B}. Then, (PA) is equivalent to

min
∑
a∈A

ωaza +
∑
b∈B

ωbθb +
∑
b∈B

ωbub (23)

s.t. (21), (16),

tak − xk + ak ≥ 0, ∀a ∈ A, k = 1, . . . , d, (24)

tak + xk − ak ≥ 0, ∀a ∈ A, k = 1, . . . , d, (25)

vbk + xk − ybk ≥ 0, ∀b ∈ B, k = 1, . . . , d, (26)

vbk − xk + ybk ≥ 0, ∀b ∈ B, k = 1, . . . , d, (27)

gbk − ybk + bk ≥ 0, ∀b ∈ B, k = 1, . . . , d, (28)

gbk + ybk − bk ≥ 0, ∀b ∈ B, k = 1, . . . , d, (29)
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trAak ≤ ξ
sA
ak z

rA−sA
a , ∀a ∈ A, k = 1, . . . , d, (30)

v
rA
bk ≤ ρ

sA
bk θ

rA−sA
b , ∀b ∈ B, k = 1, . . . , d, (31)

grBbk ≤ ψ
sB
bk u

rB−sB
b , ∀b ∈ B, k = 1, . . . , d, (32)

d∑
k=1

ξak ≤ za, ∀a ∈ A, (33)

d∑
k=1

ρbk ≤ θb, ∀b ∈ B, (34)

d∑
k=1

ψbk ≤ ub, ∀b ∈ B, (35)

za, ξak, tak,≥ 0, ∀a ∈ A, k = 1, . . . , d, (36)

θb, ub, ρbk, vbk ≥ 0, ∀b ∈ B k = 1, . . . , d, (37)

ψbk, gbk ≥ 0, ∀b ∈ B k = 1, . . . , d, (38)

x, yb ∈ R
d , ∀b ∈ B. (39)

Proof Note that the difference between (PA) and the formulation (23)–(39) stems in the
constraints that represent the norms [(7), (11) and (12)] in (PA) that are now rewritten
as (24)–(35). This equivalence follows from the observation that any constraint in the
form Z ≥ ‖X − Y‖p, for any p = r

s with r, s ∈ N\{0}, r > s and gcd(r, s) = 1, and
X,Y variables in R

d , can be equivalently written as the following set of constraints:

Qk + Xk − Yk ≥ 0, k = 1, . . . , d,

Qk − Xk + Yk ≥ 0, k = 1, . . . , d,

Qr
k ≤ Rs

k Z
r−s, k = 1, . . . , d,

d∑
k=1

Rk ≤ Z ,

Rk ≥ 0, ∀k = 1, . . . , d.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(40)

This result can be obtained from [4], although it is detailed here for the sake of
readability. Indeed, let ρ = r

r−s , then
1
ρ

+ s
r = 1. Let (Z , X,Y ) fulfill the inequality

Z ≥ ‖X − Y‖p. Then we have

‖X − Y‖p ≤ Z ⇐⇒
(

d∑
k=1

|Xk − Yk | rs
) s

r

≤ Z
s
r Z

1
ρ

⇐⇒
(

d∑
k=1

|Xk − Yk | rs Z r
s (− r−s

r )

) s
r

≤ Z
s
r ,

⇐⇒
d∑

k=1

|Xk − Yk | rs Z− r−s
s ≤ Z . (41)
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Then (41) holds if and only if ∃R ∈ R
d , Rk ≥ 0, ∀k = 1, . . . , d such that

|Xk − Yk | rs Z− r−s
s ≤ Rk , satisfying

∑d
k=1 Rk ≤ Z , or equivalently, |Xk − Yk |r ≤

Rs
k Z

r−s and
∑d

k=1 Rk ≤ Z .

Set Qk = |Xk − Yk | and Rk = |Xk − Yk |p Z−1/ρ . Then, clearly (Z , X,Y, Q, R)

satisfies (40).
Conversely, let (Z , X,Y, Q, R) be a feasible solution of (40). Then, Qk ≥ |Xk −

Yk | and Rk ≥ Q
( rs )

j Z− r−s
s ≥ |Xk − Yk | rs Z− r−s

s . Thus,
∑d

k=1 |Xk − Yk | rs Z− r−s
s ≤∑d

k=1 Rk ≤ Z , which in turn implies that
∑d

k=1 |Xk − Yk | rs ≤ Z Z
r−s
s and hence,

‖X − Y‖p ≤ Z . ��
Remark 1 (Polyhedral Norms) Note that when the norms in HA or HB are polyhedral
norms, as the well-known �1 or �∞ norms, a much simpler (linear) representation than
the one given in Theorem 9 is possible. Actually, it is well-known (see for instance
[21,22,26]) that if ‖ · ‖ is a polyhedral norm, such that B∗, the unit ball of its dual
norm, has Ext(B∗) as set of extreme points, the constraint Z ≥ ‖X −Y‖ is equivalent
to the following set of linear inequalities:

Z ≥ et (X − Y ), ∀e ∈ Ext(B∗).

Corollary 10 Problem (PA) (resp. (PB)) can be represented as a semidefinite pro-
gramming problem with |A|(2d +1)+|B|(4d +3)+1 (resp. |B|(2d +1)+|A|(4d +
3) + 1) linear constraints and at most 4d(|A| log rA + |B| log rA + |B| log rB) (resp.
4d(|B| log rB + |A| log rB + |A| log rA) positive semidefinite constraints.

Proof By Theorem 9, Problem (PA) is equivalent to Problem (23)–(39). Then, using
[4, Lemma 3], we represent each one of the nonlinear inequalities, as a system of at
most 2 log rA or 2 log rB inequalities of the form X2 ≤ Y Z , involving 3 variables,
X,Y, Z with Y, Z non negative. Hence, by Schur complement, it follows that

X2 ≤ Y Z ⇔
⎛
⎝Y + Z 0 2X

0 Y + Z Y − Z
2X Y − Z Y + Z

⎞
⎠ � 0, Y + Z ≥ 0. (42)

Hence, Problem (PA) is a semidefinite programming problem because it has a
linear objective function, |A|(2d + 1) + |B|(4d + 3) + 1 linear inequalities and at
most 4d(|A| log rA + |B| log rA + |B| log rB) linear matrix inequalities. ��

The readermaynote that by similar arguments and since the left-hand representation
of (42) is a second order cone constraint, Problem (PA) can also be seen as a second
order cone program.

The following example illustrates this model with the 18-points data set from Parlar
[18].

Example 11 Let H = {x ∈ R
d : 1.5x − y = 0} and consider the set of 18-demand

points in [18]. We consider that the distance measure in HA is the �2-norm while in
HB is the �3-norm. The solution of Problem (P) is x∗ = (9.23792, 6.435661) with
objective value f ∗ = 103.934734.
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Fig. 3 Demand points and optimal solution of Example 11

Figure 3 shows the demand points A and B, the hyperplane H, the solution x∗, as
well as the shortest paths between x∗ and the points in A and B.

Finally, to conclude this section we address a restricted case of Problem (P). Let
{g1, . . . , gl} ⊂ R[X ] be real polynomials and K := {x ∈ R

d : g j (x) ≥ 0, j =
1, . . . , l} a basic closed, compact semialgebraic set with nonempty interior satisfying
that for some M > 0 the quadratic polynomial u(x) = M − ∑d

k=1 x
2
k has a represen-

tation on K as u = σ0 + ∑�
j=1 σ j g j , for some {σ0, . . . , σl} ⊂ R[X ] being each σ j

sum of squares (Archimedean property [16]). We remark that the assumption on the
Archimedean property is not restrictive at all, since any semialgebraic set K ⊆ R

d

for which it is known that
∑d

k=1 x
2
k ≤ M holds for some M > 0 and for all x ∈ K,

admits a new representation K′ = K ∪ {x ∈ R
d : gl+1(x) := M − ∑d

k=1 x
2
k ≥ 0}

that trivially verifies the Archimedean property.
For the sake of simplicity, we assume that the domain K is compact and has non-

empty interior, as it is usual in Location Analysis. We observe that we can extend the
results in Sect. 3 to a broader class of convex constrained problems.

Remark 2 Let K := {x ∈ R
d : g j (x) ≥ 0, j = 1, . . . , l} be a basic closed, compact

semialgebraic set with nonempty interior, and consider the restricted problem:

min
x∈K

∑
a∈A

ωa d(x, a) +
∑
b∈B

ωb d(x, b). (43)

Assume that K satisfies the Archimedean property and further that any of the
following conditions hold:

1. gi (x) are concave for i = 1, . . . , l and −∑l
i=1 νi∇2gi (x) � 0 for each dual

pair (x, ν) of the problem of minimizing any linear functional ct x on K (Positive
Definite Lagrange Hessian (PDLH)).

2. gi (x) are sos-concave on K for i = 1, . . . , l or gi (x) are concave on K and strictly
concave on the boundary ofK where they vanish, i.e. ∂K∩∂{x ∈ R

d : gi (x) = 0},
for all i = 1, . . . , l.
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3. gi (x) are strictly quasi-concave on K for i = 1, . . . , l.

Then, there exists a constructive finite dimensional embedding, which only depends
on pA, pB and gi , i = 1, . . . , l, such that the solution of (43) can be obtained by solving
two semidefinite programming problems.

The validity of the above statement follows from the fact that the unconstrained
version of Problem (43) can be equivalently written as two SDP problems using the
result in Theorem 7 and Corollary 10. Therefore, it remains to prove that under the
conditions 1, 2 or 3 the constraint set x ∈ K is also exactly represented as a finite
number of semidefinite constraints or equivalently that it is semidefinite representable
(SDr). The discussion that the three above mentioned cases are SDr is similar to that
in [4, Theorem 8] and thus it is omitted here. ��

4 Location problems in two media divided by a hyperplane endowed
with a different norm

In this section we consider an extension of the location problem in the previous section
where the separating hyperplane is endowed with a third norm, namely ‖ · ‖pH , and it
may be used to travel in shortest paths crossing it. Thus, the new problem consists of
locating a new facility to minimize the weighted sum of the distances to the demand
points, but where, if it is convenient, a shortest path from the facility to a demand
point that crosses the hyperplane may travel through it. This way the hyperplane can
be seen as a rapid transit boundary for displacements between different media.

We define the shortest path distance between two points a and b in Rd by

dt (a, b) =
{ ‖a − b‖pi if a, b ∈ Hi , i ∈{A, B},

min
x,y∈H

‖x − a‖pA + ‖x − y‖pH + ‖y − b‖pB if a ∈ HA, b ∈ HB,

(DT)

and x, y represent the access and the exit (gate) points where the shortest path from
a to b crosses through the hyperplane.

As in Sect. 2 we can also give a general result about the optimal gate points of
the shortest weighted path between points in this framework. In this case we must
resort to subdifferential calculus to avoid nondifferentiability situations due to the
possible coincidence of x∗ and y∗. Let us denote by ∂x f (x∗, y∗) (resp. ∂y f (x∗, y∗))
the subdifferential set of the function f as a function of its first (resp. second) set of
variables, i.e. y is fixed (resp. x is fixed), at y∗ (resp. x∗).

Lemma 12 The distance dt (a, b) of the shortest weighted path between a and b is

ωa‖x∗ − a‖pA + ωH‖x∗ − y∗‖pH + ωb‖y∗ − b‖pB ,
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Fig. 4 Illustrative example of the generalized sines when traversing H

where x∗ = (x∗
1 , . . . , x

∗
d )

t , and y∗ = (y∗
1 , . . . , y

∗
d )

t , αt x∗ = β, αt y∗ = β must
satisfy:

λaα ∈ ωa∂‖x∗ − a‖pA + ωH∂xdH(x∗, y∗), for some λa ∈ R,

λbα ∈ ωb∂‖y∗ − b‖pB + ωH∂ydH(x∗, y∗), for some λb ∈ R,

being dH(x, y) = ‖x − y‖pH .

Now,we consider again the embedding defined inSect. 2: x ∈ R
d → (x, αt x−β) ∈

R
d+1. Denote by γa the angle between the vectors (a − x∗, 0) and (a − x∗, αt a − β)

and by γb the angle between (b− y∗, 0) and (a− y∗, αt b−β). Then, we can interpret
|αt a−β|

‖a−x∗‖pA
and |αt b−β|

‖b−y∗‖pB
as generalized sines of the angles γa and γb, respectively (see

Fig. 4). The reader may again note that in general these ratios are not trigonometric
functions, unless pA = pB = 2. We define the generalized sines as:

sinpA γa = |αt a − β|
‖x∗ − a‖pA

and sinpB γb = |αt b − β|
‖y∗ − b‖pB

.

These expressions can be written by components as:

sinpA γa =
∣∣∣∣∣∣

d∑
j=1

α j a j − α j x∗
j

‖a − x∗‖pA

∣∣∣∣∣∣ , sinpB γb =
∣∣∣∣∣∣

d∑
j=1

α j b j − α j y∗
j

‖b − y∗‖pB

∣∣∣∣∣∣ .
Finally, by similarity we shall denote the non-negative value of each component in

the previous sums as

sinpA γa j := |α j a j − α j x∗
j |

‖a − x∗‖pA
and sinpB γb j := |α j b j − α j y∗

j |
‖b − y∗‖pB

, j = 1, . . . , d.

With the above notation, we state the following results derived from Lemma 12.

Corollary 13 (Snell’s-like result) Assume that ‖ · ‖pA , ‖ · ‖pB , ‖ · ‖pH are �p-norms
with 1 < p < +∞. Let x∗, y∗ ∈ R

d , αt x∗ = αt y∗ = β. Then, x∗ and y∗ define the
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shortest weighted path between a and b when traversing the hyperplane is allowed if
and only if the following conditions are satisfied:

1. For all j such that α j = 0:

ωa

[ |x∗
j − a j |

‖x∗ − a‖pA

]pA−1

sign(x∗
j − a j ) + ωH

[ |x∗
j − y∗

j |
‖x∗ − y∗‖pH

]pH−1

sign(x∗
j − y∗

j ) = 0,

ωb

[ |y∗
j − b j |

‖y∗ − b‖pB

]pB−1

sign(y∗
j − b j ) − ωH

[ |x∗
j − y∗

j |
‖x∗ − y∗‖pH

]pH−1

sign(x∗
j − y∗

j ) = 0.

2. For all i, j , such that αiα j �= 0:

ωa

[
sin γai

|αi |
]pA−1 sign(x∗

i − ai )

αi
+ ωH

[ |x∗
i − y∗

i |
‖x∗ − y∗‖pH

]pH−1 sign(x∗
i − y∗

i )

αi

= ωa

[
sin γa j

|α j |
]pA−1 sign(x∗

j − a j )

α j
+ ωH

[ |x∗
j − y∗

j |
‖x∗ − y∗‖pH

]pH−1
sign(x∗

j − y∗
j )

α j
,

and

ωa

[
sin γbi

|αi |
]pB−1 sign(y∗

i − bi )

αi
− ωH

[ |x∗
i − y∗

i |
‖x∗ − y∗‖pH

]pH−1 sign(x∗
i − y∗

i )

αi

= ωa

[
sin γb j

|α j |
]pB−1 sign(y∗

j − b j )

α j
− ωH

[ |x∗
j − y∗

j |
‖x∗ − y∗‖pH

]pH−1
sign(x∗

j − y∗
j )

α j
.

Corollary 14 If d = 2, pA = pB = pH = 2 and H = {(x1, x2) ∈ R
2 : x2 = 0}, the

points x∗, y∗ satisfy one of the following conditions:

1. ωa sin θa = ωb sin θb = ωH
|y∗
1 |

‖x∗−y∗‖pH
and x∗ �= y∗, or

2. ωa sin θa = ωb sin θb and x∗ = y∗,
where θa is the angle between the vectors a−x∗ and (0,−1) and θb the angle between
b − y∗ and (0, 1) (see Fig. 5).

Proof To prove 1), since the Euclidean norm is isotropic, we can assume w.l.o.g. that
after a change of variable x∗ and y∗ can be taken such that x∗

1 = 0, y∗
1 ≥ 0 and

a = (a1, a2) such that a1 ≥ 0, a2 < 0, b = (b1, b2) such that b1 ≤ 0, b2 > 0.
The optimality condition using Lemma 12, assuming x∗ �= y∗, is:

ωa
|a1|

‖x∗ − a‖2 − ωH
|y∗

1 |
‖x∗ − y‖2 = 0,

−ωb
|y∗

1 − b1|
‖y∗ − b‖2 + ωH

|y∗
1 |

‖x∗ − y∗‖2 = 0. (44)

The result follows since sin θa = |a1|‖x∗−a‖2 , sin θb = |y∗
1−b1|

‖y∗−b‖2 .
If x∗ = y∗ the result for condition 2) follows from Corollary 4. ��
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Fig. 5 Snell’s law when
traversing H
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Fig. 6 Snell’s law when
traversing H and ωH = 0
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Note that in Corollary 14 one can make w.l.o.g. the assumption that the separating
line is x2 = 0 due to the isotropy of the Euclidean norm.

Corollary 15 If d = 2, pA = pB = pH = 2 andH = {(x1, x2) ∈ R
2 : x2 = 0} then

the following assertions hold:

1. If ωa = ωb = ωH �= 0, then θa = θb.
2. If ωH = 0 and ωaωb �= 0, then θa = θb = 0.

Proof The proof follows observing that if y∗
1 > 0 from Eq. (44) in Corollary 14 we

get that |y∗
1 − b1| = ‖y∗ − b‖2 which is impossible unless b2 = 0, contradicting the

hypotheses in the proof. Therefore, y∗
1 cannot be greater than zero. Hence, in this case

the condition reduces to x∗ = y∗ and ωa
|a1|‖x∗−a‖2 = ωb

|b1|‖y∗−b‖2 . Thus, sin θa = sin θb.
Next, the case when ωH = 0 and ωaωb �= 0, reduces to compute the projections

onto H, of each one of the points a and b. Indeed by condition 1) in Corollary 14,
sin θa = sin θb = 0, being θa = θb = 0 (see Fig. 6). ��
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Lemma 16 Let a ∈ HA and b ∈ HB. Then,

1. If max{pA, pB} ≥ pH the shortest path distance dt (a, b) = minx :αt x=β ‖x −
a‖pA + ‖x − b‖pB , i.e. it crosses H at a unique point.

2. If pH ≥ max{pA, pB} then the shortest path from a to b may contain a non-
degenerated segment onH.

Proof Let us consider the general form of the solution to determine dt (a, b), namely

dt (a, b) = min
x,y∈H

‖x − a‖pA + ‖x − y‖pH + ‖y − b‖pB .

Clearly, if pA ≥ pH, we have

‖x − a‖pA + ‖x − y‖pH + ‖y − b‖pB ≥ ‖x − a‖pA + ‖x − y‖pA + ‖y − b‖pB ;
(by the triangular inequality) ≥ ‖y − a‖pA + ‖y − b‖pB .

��
Definition 17 We say that the norms �pA , �pB and �pH satisfy the Rapid Enough
Transit Media Condition (RETM) for a ∈ A and b ∈ B if:

1. For y∗ ∈ arg min
y∈H

‖y − a‖pA , ‖a − y∗‖pA + ‖x − y∗‖pH ≤ ‖x − a‖pA , for all

x ∈ H, and
2. For x∗ ∈ arg min

x∈H
‖x − b‖pB , ‖b − x∗‖pB + ‖x∗ − y‖pH ≤ ‖y − b‖pB , for all

y ∈ H.

Note that the above definition states that a triplet of norms (�pA , �pB , �pH) satisfies
the condition if the norm defined over the hyperplane H is ‘fast enough’ to reverse
the triangle inequality when mixing the norms, i.e., when the shortest path from a
point outside the hyperplane to another point in the hyperplane benefits from traveling
throughout the hyperplane.

Lemma 18 Let a ∈ HA and b ∈ HB. Then, if ∞ > pH ≥ pA ≥ pB ≥ 1 and the
corresponding norms satisfy the RETM condition for a and b, the shortest path from
a to b crosses throughout H in the following two points:

x∗ = a − αt a − β

‖α‖∗
pA

δAα and y∗ = b − αt b − β

‖α‖∗
pB

δBα

where ‖ · ‖∗
pA and ‖ · ‖∗

pB are the dual norms to ‖ · ‖pA and ‖ · ‖pB , respectively, and

δAα ∈ argmax‖δ‖pA=1 αtδ, δBα ∈ argmax‖δ‖pB =1 αtδ.

Proof First, note that x∗ and y∗ correspond with the projections of a and b onto H,
respectively (see [17]). Let x, y ∈ H be alternative gate points in a path from a to b.
Then
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‖b − y‖pB + ‖x − y‖pH + ‖a − x‖pA
RET M≥ ‖b − y∗‖pB

+ ‖y∗ − y‖pH + ‖x − y‖pH + ‖a − x∗‖pA

+ ‖x∗ − x‖pH
≥ ‖b − y∗‖pB + ‖a − x∗‖pA + ‖y∗ − x‖pH + ‖x∗ − x‖pH
≥ ‖b − y∗‖pB + ‖a − x∗‖pA + ‖y∗ − x∗‖pH .

��

Example 19 Let H = {(x, y) ∈ R
2 : y = x} and a = (4, 5)t ∈ HA, b = (12, 11)t ∈

HB with pA = pB = 1 and pH = +∞. We observe that these norms satisfy the
RETM condition for a and b. First of all, we realize that the closest �1-points to
a and b, x∗ and y∗, respectively, on H must belong to x∗ ∈ [(4, 4), (5, 5)] and
y∗ ∈ [(11, 11), (12, 12)], respectively.
1. Let (y, y) ∈ H. ‖a − x∗‖1 + ‖x∗ − (y, y)‖∞ = 1 + min{|4 − y|, |5 − y|} and

‖a − (y, y)‖1 = |4 − y| + |5 − y|. Then, for y ≥ 5, we get that 1 + (y − 5) =
y − 4 ≤ (y − 4) + (y − 5) = 2y − 9, which is always true for y ≥ 5. Otherwise,
if y ≤ 4, 1 + (4 − y) = 5 − y ≤ (4 − y) + (5 − y) = 9 − 2y, which is always
true for y ≤ 4.

2. Let (x, x) ∈ H. ‖b − y∗‖1 + ‖y∗ − (x, x)‖∞ = 1+min{|11− x |, |12 − x |} and
‖a− (x, x)‖1 = |12− x |+ |11− x |. Then, for x ≥ 12, we get that 1+ (x −12) =
x − 11 ≤ (x − 12) + (x − 11) = 2x − 23, which is always true for x ≥ 12.
Otherwise, if x ≤ 11, 1+ (11− x) = 12− x ≤ (12− x) + (11− x) = 23− 2x ,
which is always true for x ≤ 11.

Hence, the RETM condition is satisfied, and the shortest path from a to b crosses
inH through their projections:

x∗ = (5, 5) and y∗ = (11, 11).

The overall length of this path is ‖a−x∗‖1+‖x∗−y∗‖∞+‖b−y∗‖1 = 1+6+1 = 8
(see Fig. 7).

Note that the RETM condition is defined for any triplet of norms (�pA , �pB , �pH )
and for any pairs of points a and b. Hence, unless the condition is fulfilled for all pairs
of points a ∈ A and b ∈ B, we cannot extend Lemma 18 to the location of all the
points in A and B. Actually, even for the slowest �p-norm in HA and HB , namely �1,
and the fastest one in H, namely �∞, it is easy to check that such a condition is not
verified for every pair of points.

Once we have analyzed shortest paths between points in the framework of the
location problem to be solved, we come back to the original goal of this section: the
location of a new facility to minimize the weighted sum of shortest path distances
from the demand points. Thus, the problem that we wish to analyze in this section can
be stated similarly as in (P).
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Fig. 7 Shortest distance from a
to b in Example 19
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min
x∈Rd

∑
a∈A

ωadt (x, a) +
∑
b∈B

ωb dt (x, b). (PT)

Note that Problem (P), analyzed in Sect. 3, is a particular case of Problem (PT)
when the two crossing points y1 and y2 are enforced to be equal, i.e. whenever it is not
allowed to move traversing the hyperplane when computing shortest paths between
the different media.

By similar arguments to those used in Theorem 5 we can also state an existence
and uniqueness result for Problem (PT).

Theorem 20 Assume thatmin{|A|, |B|} > 2. If the points in A or B are not collinear
1 < pH < +∞ and 1 < pB ≤ pA < +∞ then Problem (PT) always has a unique
optimal solution.

It is also possible to give sufficient conditions so that Problem (PT) reduces to (P).
The following proposition clearly follows from Lemma 16.

Proposition 21 Let A, B ⊆ R
d and H = {x ∈ R

d : αt x = β}. Then, if pA ≥ pB ≥
pH, Problem (PT) reduces to Problem (P).

The description of the shortest path distances in (DT), allows us to formulate Prob-
lem (PT) as a mixed integer nonlinear programming problem in a similar manner as
we did in Theorem 6 for (P).

Theorem 22 Problem (PT) is equivalent to the following problem:

min
∑
a∈A

ωa Za +
∑
b∈B

ωbZb (45a)

s.t. (3), (5), (7), (10), (13), (14),
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θa + ua + ta − Za ≤ M̂a γ, ∀a ∈ A, (45b)

θb + ub + tb − Zb ≤ M̂b (1 − γ ), ∀b ∈ B, (45c)

θa ≥ ‖x − y1a‖pB , ∀a ∈ A, (45d)

ua ≥ ‖a − y2a‖pA , ∀a ∈ A, (45e)

ta ≥ ‖y1a − y2a‖pH , ∀a ∈ A, (45f)

θb ≥ ‖x − y1b‖pA , ∀b ∈ B, (45g)

ub ≥ ‖b − y2b‖pB , ∀b ∈ B, (45h)

tb ≥ ‖y1b − y2b‖pH , ∀b ∈ B, (45i)

αt yia = β, ∀a ∈ A, i = 1, 2, (45j)

αt yib = β, ∀b ∈ B, i = 1, 2, (45k)

Za, za, θa, ua, ta,≥ 0, ∀a ∈ A, (45l)

Zb, zb, θb, ub, tb,≥ 0 ∀b ∈ B, (45m)

y1a , y
2
a , y

1
b , y

2
b ∈ R

d , ∀a ∈ A, b ∈ B (45n)

γ ∈ {0, 1}. (45o)

with M̂a, M̂b > 0 sufficiently large constants for all a ∈ A, b ∈ B.

The reader may note that appropriate values of the constants M̂a, M̂b can be easily
derived which results in values similar to those described at the end of Theorem 6.
Moreover, one can have amuch better solution approach based on a simple geometrical
observation.

The following result states that the solution of Problem (45) can also be reached by
solving two simpler problems when restricting the solution to belong to HA or HB .

Theorem 23 Let x∗ ∈ R
d be the optimal solution of (PT). Then, x∗ is the solution of

one of the following two problems:

min
∑
a∈A

ωaza +
∑
b∈B

ωbθb+
∑
b∈B

ωbub +
∑
b∈B

ωbtb

s.t. (7), (45g), (45h),

(45i), (45k), (45l), (21),

za ≥ 0, ∀a ∈ A,

θb, ub, tb ≥ 0, ∀b ∈ B,

x, y1b , y
2
b ∈ R

d , (PTA)
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Fig. 8 Points and optimal solution of Example 24

min
∑
b∈B

ωbzb +
∑
a∈A

ωaθa+
∑
a∈A

ωaua +
∑
a∈A

ωata

s.t. (10), (45d), (45e),

(45f), (45j), (45m), (22),

zb ≥ 0, ∀b ∈ B,

θa, ua, ta ≥ 0, ∀a ∈ A,

x, y1a , y
2
a ∈ R

d . (PTB)

A similar proof to the one of Corollary 10 would allow us to give an equivalent
SOCP formulation for problems (PTA) and (PTB).

We illustrate Problem (PT) with an instance of the 18 points data set in [18].

Example 24 Consider the 18 points in [18] and the separating line H = {x ∈ R
d :

1.5x − y = 0}. Assume that in HA the distance is measured with the �2-norm, in HB

the distance is induced by the �3-norm and onH the norm is 1
4�∞. Figure 8 shows the

demand points A and B, the hyperplane H and the solution x∗. The optimal solution
is x∗ = (9.133220, 6.897760) with objective value f ∗ = 100.442353.

Note that the difference between this model and the one above is that the shortest
path distance from the new facility to a demand point may not cross the hyperplane
H at a unique point. Comparing the results with those obtained in Example 11 for the
same data set, but not allowing the use ofH as a high speedmedia, we get savings in the
overall transportation cost of 3.492381 units. In Fig. 9, we can observe that the shortest
path from the new facility x∗ and the demand point (2, 8) consists of traveling from
x∗ to y1 = (5.918243, 8.877364) in HB (using the �3-norm), then traveling within
the hyperplaneH from y1 to y2 = (4.635013, 6.952519) (using the 1/4− �∞-norm)
and finally to (2, 8) in HA (using �2-norm). Actually, the overall length of the path is:
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Fig. 9 Shortest path from x∗ to (2, 8)

d3(x
∗, y1) + 1

4
d∞(y1, y2) + d2(y

2, (2, 8)) = 3.447879 + 0.4812115 + 2.835578

= 6.7646685.

Finally, we state, for the sake of completeness, the following remark whose proof
is similar to the one for Remark 2 and that extends the second order cone formulations
in Theorem 23 to the constrained case.

Remark 3 Let {g1, . . . , gl} ⊂ R[X ] be real polynomials andK := {x ∈ R
d : g j (x) ≥

0, j = 1, . . . , l} a basic closed, compact semialgebraic set with nonempty interior
satisfying the Archimedean property, and consider the following problem

min
x∈K

∑
a∈A

ωadt (x, a) +
∑
b∈B

ωbdt (x, b). (46)

with dt (x, y) as defined in (DT). Assume that any of the following conditions hold:

1. gi (x) are concave for i = 1, . . . , � and −∑l
i=1 νi∇2gi (x) � 0 for each dual

pair (x, ν) of the problem of minimizing any linear functional ct x on K (Positive
Definite Lagrange Hessian (PDLH)).

2. gi (x) are sos-concave on K for i = 1, . . . , � or gi (x) are concave on K and strictly
concave on the boundary ofK where they vanish, i.e. ∂K∩∂{x ∈ R

d : gi (x) = 0},
for all i = 1, . . . , l.

3. gi (x) are strictly quasi-concave on K for i = 1, . . . , l.

Then, there exists a constructive finite dimension embedding, which only depends
on pA, pB, pH and gi , i = 1, . . . , �, such that (46) is equivalent to two semidefinite
programming problems. ��
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5 Computational experiments

We have performed a series of computational experiments to show the efficiency of
the proposed formulations to solve problems (P) and (PT). Our SOCP formulations
have been coded in Gurobi 5.6 and executed in a PC with an Intel Core i7 processor at
2x 2.40 GHz and 4 GB of RAM. We fixed the barrier convergence tolerance for QCP
in Gurobi to 10−10.

Our computational experiments have been organized in three blocks because the
goal is different in each one of them. First, we report on the data sets already considered
in Parlar [18] and Zaferanieh et al. [27]. These data are sets of 4, 18 (in [18]), 30 and
50 (in [27]) demand points in the plane and separating hyperplanes y = 0.5x, y =
x, y = 1.5x . Second, we consider the well-known 50-points data set in Eilon et. al
[12] with different separating hyperplanes and norms in each one of the corresponding
half-spaces. Finally, we also report on some randomly generated instances with 5,000,
10,000 and 50,000 demand points in dimension 2, 3 and 5 and different combinations
of norms.

The results of the first block are included inTables 1 and 2. Table 1 shows in columns
CPUTime ([18,27]), f ∗ ([18,27]) and x∗([18,27]) the results reported in [18] (for the
4 and 18 points data sets) and [27] (for the 30 and 50 points data sets), and in columns
CPUTime(P), f ∗(P) and x∗ (P) the results obtained with our approach. (The reader
may observe that the CPU times are not directly comparable since results in [27]
were obtained in a machine with a single processor at 2.80 GHz). In this table N is
the number of demand points, H is the equation of the separating hyperplane (line),
CPUTime is the CPU-time and f ∗ and x∗ are the objective value and coordinates of
the optimal solution reported with the corresponding approach, respectively. In order
to compare our objective values and those obtained in [18] or [27], we have evaluated
such values by using the solution obtained in those papers, where the authors provided
a precision of two decimal places. This evaluation was motivated because we found
several typos in the values reported in the papers. The goal of this block of data is to
compare the quality of solutions obtained by the different methods. Comparing with
our method, we point out that our solutions are superior since we always obtain better
objective values than those in [18] or [27]. These results are not surprising since both
[18] and [27] apply approximatemethodswhereas our algorithm is exact. Furthermore,
the approach in [27] is much more computationally costly than ours. Additionally, in
order to check whether a rapid transit line can improve the transportation costs from
the demand points to the new facility, we report in Table 2 the results obtained for the
same data sets applied to Problem (PT) taking ‖ · ‖H = 1

4�∞. We observe that in this
case the overall saving in distance traveled ranges in 5% to 24%.

Table 3 reports the results of the second block of experiments. In this block, we test
the implementation of our SOCP algorithm over the 50-points data sets in [12]. The
goals are: (1) to check the efficiency of our methodology for a well-known data set in
location theory, considering different norms in the different media, over themodels (P)
and (PT) (Note that in [18] and [27] only (P) is solved using �1 and �2-norms); and (2)
to provide some benchmark instances to compare current and future methodologies
for solving (P) and (PT). To this end, we report CPU times and objective values for
different combination of �p-norms (�2, �3 and �1.5) and polyhedral norms (�1, �∞)
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Table 2 Results of model (PT) with ‖ · ‖H = 1
4 �∞ for the data sets in [18] and [27]

N H CPUTime(PT) f ∗ (PT) x∗ (PT)

4 y = x 0.0000 20.5307 (0.000000, 0.000001)

18 y = 1.5x 0.0000 108.3362 (8.811381, 7.119336)

30 y = 0.5x 0.0156 254.7805 (6.000000, 3.000000)

30 y = x 0.0000 230.7513 (5.234851, 5.234838)

30 y = 1.5x 0.0156 244.4072 (5.153294, 5.102873)

50 y = 0.5x 0.0156 917.1736 (11.923664, 5.961832)

50 y = x 0.0156 808.2990 (10.000020, 9.999995)

50 y = 1.5x 0.0156 892.4482 (10.521522, 9.571467)

fulfilling the conditions pA > pB for Problem (P) and pH > pA ≥ pB for Problem
(PT) and different slopes for the separating hyperplane H = {x ∈ R

2 : y = λx} with
λ ∈ {1.5, 1, 0.5} to classify the demand points.

Finally, Table 4 shows the results of our computational test for the third block of
experiments. The goal of this block is to explore the limits in: (1) number of demand
points, (2) dimension of the framework space; and (3) combination of norms, that can
be adequately handled by our algorithm for solving problems (P) and (PT). For this
purpose, we consider randomly generated instances with N ∈ {5000, 10,000, 50,000}
demand points in [0, 1]d , for d = 2, 3 and 5. The separating hyperplane was taken
as H = {x ∈ R

d : xd = 0.5} and the different norms to measure the distances in
each region (�1, �2, �1.5, �3 and �∞) combined adequately to fulfill the conditions
(see Lemma 16 and Proposition 21) to assure that the problems are well-defined and
that the different instances of Problem (PT) do not reduce to (P). From Table 3, we
conclude that our method is rather robust so that it can efficiently solve instances
with more than 50,000 demand points in high dimensional spaces (d = 2, 3, 5) and
different combinations of norms in a few seconds. We have observed that instances
with polyhedral norms, in particular �1, are in general harder to solve than those with
smooth norms. This behavior is explained because the representation of polyhedral
norms requires to add constraints depending on the number of extreme points of their
unit balls. This figure grows exponentially with the dimension and for instance, for
50,000 points in dimension d = 5, our formulation needs 50,000×5×32 = 8,000,000
linear inequalities in order to represent the norm �1. This results in an average CPU
time of 1019.48s (with a maximum of 3945.82 s) for those problems where either �pA
or �pB equals �1, whereas the CPU time for the remaining problems in dimension
d = 5 is 215.69 s (with a maximum of 697.50 s).

6 Extensions

In this section we state some additional results for some variations of the problems that
we addressed in previous sections: (1) each demandpointa ∈ A (b ∈ B) has associated
two different norms, which are different from those associated to other points, to
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measure distances at each side of the separating hyperplane: and (2) the shortest length
path between two points in the same half-space is allowed to be computed using, if
convenient, some displacement throughout the hyperplane. Observe that the first case
is the natural extension to this framework of the so called location problems with
“mixed” norms; whereas the second case extends the applicability of the separating
media as a general rapid transit space in the transportation problem.

6.1 Location problems with mixed norms

Location problems with mixed norms are those where each demand point is allowed
to measure distances with a different distance measure. The interpretation is that
each demand point may be using a different transportation mode so that its velocity
is different from one another. This framework can also be applied to the location
problems considered in this paper. Indeed, it suffices to endow each single demand
point with two norms one on each side of the separating hyperplane.

Let us assume that each demand point a ∈ HA (resp. b ∈ HB) has associated two
norms ‖ · ‖pAa

and ‖ · ‖pBa
(resp. ‖ · ‖pAb

and ‖ · ‖pBb
) such that each one of them is used

to measure distances with respect to the points in HA or in HB .
This way, for any x ∈ R

d the distance between x and z ∈ A ∪ B can be computed
as:

d(z, x) =
{ ‖z − x‖piz

∀x, z ∈ Hi , i ∈ {A, B}
miny∈H ‖z − y‖piz

+‖y − x‖
p j
z

∀x ∈ Hj , z ∈ Hi , i, j ∈ {A, B}, i �= j

(47)
With this generalized framework formeasuring distances from the different demand

points, we can consider the following location problem: Let A and B be two finite
sets of given demand points in R

d , and ωa and ωb be the weights of the demand
points a ∈ A and b ∈ B, respectively. Consider H = {x ∈ R

d : αt x = β} to be the
separating hyperplane in Rd with α ∈ R

d and β ∈ R, and

HA = {x ∈ R
d : αt x ≤ β} and HB = {x ∈ R

d : αt x > β}.

The goal is to find the new facility x ∈ R
d minimizing the overall distance (47) to

all the demand points, i.e.,

min
x∈Rd

∑
a∈A

ωad(x, a) +
∑
b∈B

ωb d(x, b). (48)

A similar proof to the one for Theorem 6, allows us to write the following valid
formulation for Problem (48).
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Corollary 25 Let x∗ ∈ R
d be the optimal solution of (48). Then, x∗ is the solution

of one of the following two problems:

min
∑
a∈A

ωaza +
∑
b∈B

ωbθb +
∑
b∈B

ωbub

s.t. za ≥ ‖x − a‖pAa
, ∀a ∈ A,

θb ≥ ‖x − yb‖pAb
, ∀b ∈ B,

ub ≥ ‖b − yb‖pBb
, ∀b ∈ B,

αt yb = β, ∀b ∈ B,

αt x ≤ β,

za ≥ 0, ∀a ∈ A,

θb, ub ≥ 0, ∀b ∈ B,

x, yb ∈ R
d .

min
∑
b∈B

ωbzb +
∑
a∈A

ωaθa +
∑
a∈A

ωaua

s.t. θa ≥ ‖x − ya‖pBa
, ∀a ∈ A,

ua ≥ ‖a − ya‖pAa
, ∀a ∈ A,

zb ≥ ‖x − b‖pBb
, ∀b ∈ B,

αt ya = β, ∀a ∈ A,

αt x ≥ β,

zb ≥ 0, ∀b ∈ B,

θa, ua ≥ 0, ∀a ∈ A,

x, ya ∈ R
d .

Once again, if we assume that all the considered norms are �p or polyhedral then
the above problems admit reformulations as second order cone or linear programs that
can be solved efficiently with good computational results as shown in the previous
sections. The reader may note that the extension of the location problems with mixed
norms to the framework in the Sect. 4 is similar and thus the details are not included
here.

6.2 Location problems and critical reflection

Motivated by some practical situations in transportation systems using rapid transit
lines and critical reflection in Physics, here we consider another extension of the
location problem addressed in the previous sections. Depending on the nature of the
media separating the space it may be advantageous not only to use it to determine the
shortest path between points in different regions but also between points in the same
half-space. In these cases, a shortest path between a and b in the same half-space may
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Continuous location under the effect of ‘refraction’ 67

Fig. 10 Shortest paths from
(4, 3) to (8, 7) with the different
frameworks

HB

HA

(4, 3)

(8, 7)

also consist of three legs: the first one from a to the hyperplane, the second one within
the hyperplane and the last one from the hyperplane to b. Indeed, it is not difficult to
realize that this type of pattern may induce distance measures with smaller length than
those where displacements on the separating media are not allowed for points in the
same region. We illustrate this behavior with the following example.

Example 26 Let us consider the hyperplane H = {(x, y) ∈ R
2 : x − y = 0}, a =

(4, 3) ∈ HB and b = (8, 7) ∈ HB . Assume that the norm in HB is �1 while the norm in
H is �∞. The shortest path lengthwith the frameworkdescribed in the previous sections
is d1(b, a) = ‖b−a‖1 = |8−4|+|7−3| = 8. However, using the alternative approach
previously described, the shortest path from b to a goes through the hyperplaneH and
thus d(b, a) = d1(b, (7, 7)) + d∞((7, 7), (4, 4)) + d1((4, 4), a) = 1 + 3 + 1 = 5.
Figure 10 shows the difference between both paths: with a dashed line the direct
path with the �1-norm and with a bold line the three legs of the path throughout the
hyperplane.

LetH = {x ∈ R
d : αt x = β} be a hyperplane that separates Rd in two half spaces

HA = {x ∈ R
d : αt x ≤ β} and HB = {x ∈ R

d : αt x > β}; and assume that
these regions are endowed with three distance measures ‖ · ‖pH , ‖ · ‖pA and ‖ · ‖pB ,
respectively. Furthermore, we are given two finite sets of demand points A ⊂ HA and
B ⊂ HB .

First of all, we define the shortest path distance in the new framework.

dex (x, z) =

⎧⎪⎪⎨
⎪⎪⎩
min{‖x − z‖i ,miny1,y2∈H ‖x − y1‖pi + ‖y1 − y2‖pH + ‖y2 − z‖pi },

∀x, z ∈ Hi , i ∈ {A, B},
miny1,y2∈H ‖x − y1‖pi + ‖y1 − y2‖pH + ‖y2 − z‖p j ,

∀x ∈ Hi , z ∈ Hj , i, j ∈ {A, B}, i �= j.

Next, the new location problem that appears in this extended framework is:

f ∗ := inf
x∈Rd

∑
a∈A

ωa dex (x, a) +
∑
b∈B

ωb dex (x, b). (PEX)

The following result gives a valid mixed integer nonlinear programming formula-
tion for (PEX).
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Theorem 27 Let x∗ ∈ R
d be the optimal solution of (PEX) and Ma, Mb > 0 suffi-

ciently large constants for all a ∈ A, b ∈ B. Then, x∗ is the solution of one of the
following two problems:

min
∑
a∈A

ωaza +
∑
b∈B

ωb(θb + ub + tb) (PA
EX)

s.t. z1a ≥ ‖x − a‖pA , ∀a ∈ A,

z2a ≥ ‖x − y1a‖pA , ∀a ∈ A,

z3a ≥ ‖y1a − y2a‖pH , ∀a ∈ A,

z4a ≥ ‖y2a − a‖pA , ∀a ∈ A,

θb ≥ ‖x − y1b‖pA , ∀b ∈ B,

ub ≥ ‖y2b − b‖pB ∀b ∈ B,

tb ≥ ‖y1b − y2b‖pH , ∀b ∈ B,

za ≥ z1a + Ma(δa − 1),∀a ∈ A,

za ≥ z2a + z3a + za4 − Maδa,∀a ∈ A,

αt x ≤ β,

αt y j
a = β, ∀a ∈ A,∀ j = 1, 2,

αt y j
b = β, ∀b ∈ B,∀ j = 1, 2,

δa ∈ {0, 1}, ∀a ∈ A,

x, y1a , y
2
a , y

1
b , y

2
b ∈ R

d ,

min
∑
b∈B

ωbzb +
∑
a∈A

ωa(θa + ua + ta) (PB
EX)

s.t. z1b ≥ ‖x − b‖pB , ∀b ∈ B,

z2b ≥ ‖x − y1b‖pB , ∀b ∈ B,

z3b ≥ ‖y1b − y2b‖pH , ∀b ∈ B,

z4b ≥ ‖y2b − b‖pB , ∀b ∈ B,

θa ≥ ‖x − y1a‖pA , ∀a ∈ A,

ua ≥ ‖y2a − a‖pB ∀a ∈ A,

ta ≥ ‖y1a − y2a‖pH , ∀a ∈ A,

zb ≥ z1b + Mb(δb − 1),∀b ∈ B,

zb ≥ z2b + z3b + za4 − Mbδb,∀b ∈ B,

αt x ≥ β.
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Fig. 11 Points and optimal solution of Example 28

Proof The proof of this theorem is similar to the one in Theorem 7 once binary
variables δa (δb) are introduced to model the minimum that appears in the expression
of dex defined above. ��

The reader may observe that unlike the problems in the previous sections, the
above reformulation falls within the field of mixed integer nonlinear programming
and therefore, one cannot expect to solve these problems easily. In spite of that, if the
norms considered in the different regions are either �p or polyhedral these problems
are still solvable for medium size instances using nowadays available mixed integer
second order cone programming solvers. Furthermore, we note in passing that valid
values of the constants Ma, Mb can be easily derived which result in values similar
to those described at the end of Theorem 6.

Next, we illustrate Problem (PEX) with an instance taken from [18].

Example 28 Consider the 18 points data set in [18]. Take as the separating line H =
{x ∈ R

d : 1.5x − y = 0}. Assume that in HA and HB the distance is measured with
the �1-norm and that H is endowed with the �∞-norm. Figure 11 shows the demand
points A and B, the hyperplaneH and the solutions of problems (PEX) and (PT), x∗ =
(3.3333, 5) and x ′ = (9, 8), respectively. The optimal value of (PEX) is f ∗ = 128.00
while the one for (PT), f ′ = 132.9166. In Fig. 12we illustrate one of the shortest paths
between the demand point (6, 1) and the optimal facility x∗, both in the same half-
space, that travels through the hyperplane: d((6, 1), x∗) = 5.3333 + 1

4 4 = 6.3333.
This distance is smaller than the �1 distance between them: d1((6, 1), x∗) = 6.66666.

We have implemented this new formulation in Gurobi 5.6 in order to compare
the results obtained with this approach and the one proposed in Sect. 4 for the data
sets in [18,27] and [12]. We have used very different distance measures in the half-
spaces and the hyperplane, namely �1 in HA and HB and 1

4 �∞ in H = {(x, y) ∈
R
2 : y = α1x} with α1 ∈ {0.5, 1, 1.5}. (The reader may observe that this choice

corresponds to the most extreme cases within the �p-norms, namely �1 and �∞.) The
results are presented in Table 5. This table summarizes by rows the three different
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Fig. 12 Shortest paths from x∗ to (6, 1)

choices of α1 ∈ {0.5, 1, 1.5}. The table has three blocks, one per each α1. Each of
these blocks shows the results for problems with different number of demand points
N ∈ {4, 18, 30, 50}. For each model, namely (PT) and (PEX), we report by columns
the same information: coordinates of optimal solutions, optimal values and CPU time
to get the solutions.

The CPU time was limited to two hours for solving the problem. In some prob-
lems the optimal facility is the same using the different approaches, although, as
expected, the optimal value for (PEX) is at least as good as for (PT). In some
of the largest problems (those with 50 demand points) optimality could not be
proven with this time limit, but the suboptimal solution already improves the one
obtained when the “reflection” is not allowed. In those problems the CPU time was
indicated as >7200 and we write in parenthesis the gap between such a solution
and the best lower bound found when the time limit was reached. In general, the
CPU times for these data sets are tiny when (PT) is run, and increase consider-
ably when Problem (PEX) is solved, due to the binary variables that appear in the
model.

7 Conclusions

This paper addresses the problem of locating a new facility in a d-dimensional space
when the distance measures (�p or polyhedral norms) are different at each one of the
sides of a given hyperplaneH. This problem generalizes the classical Weber problem,
which becomes a particular case when the same norm is considered on both sides of
the hyperplane. We relate this problem with the physical phenomenon of refraction
and obtain an extension of the law of Snell with application to transportation models
with several transportation modes. We also extend the problem to the case where
the hyperplane is considered as a rapid transit media that allows the demand points to
travel faster throughH to reach the new facility. Extensive computational experiments
run in Gurobi are reported in order to show the effectiveness of the approach.
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Table 5 Results of models (PT) and (PEX)

α N x ′ (PT) f ′ (PT) CPUTime(PT) x∗ (PEX) f ∗ (PEX) CPUTime (PEX)

0.5 4 (5, 2.5) 16.75 0.0000 (5, 2.5) 16.75 0.015623

18 (9, 4.5) 97.75 0.0000 (9, 4.5) 89.5 0.03125

30 (6, 3) 266.5 0.0000 (6, 3) 251 0.03125

50 [27] (12, 6) 959.75 0.0000 (11, 5.5) 911.5 >7200 (11.03%)

50 [12] (5.89, 2.945) 201.5475 0.0000 (5.89, 2.945) 189.9075 >7200 (11.51%)

1 4 (0, 0) 22.5 0.0000 (5, 5) 22.5 0.015623

18 (8, 8) 123 0.0000 (8, 8) 105.5 0.078125

30 (5, 5) 265.25 0.0000 (5, 5) 251.25 1.297066

50 [27] (1, 10) 927.75 0.0000 (1, 10) 873.5 124.81

50 [12] (5, 5) 177.5225 0.0000 (5.57, 5.57) 170.4 550.1219

1.5 4 (5, 6) 24.166667. 0.0000 (4, 6) 23.666667 0.015621

18 (9, 8) 132.916667 0.0000 (3.3333, 5) 128 0.015629

30 (5, 5) 299.75 0.0000 (2.6667, 4) 269.75 0.062504

50 [27] (11, 10) 1076.583333 0.015625 (5.3333, 8) 1009.25 >7200 (5.98%)

50 [12] (3.7133, 5.570) 206.3725 0.015627 (3.5, 5.250) 195.519167 >7200 (11.52%)

Several extensions of the results in this paper are possible applying similar tools to
those used here. Among themwemay consider a broader family of location problems,
namely Ordered median problems [19–21], with framework space separated by a
hyperplane. Similar results to the ones in this paper can be obtained assuming that the
sequence of lambda weights is non-decreasing monotone, inducing a convex objective
function. Another interesting extension is the consideration of a framework space
subdivided by an arrangement of hyperplanes. In this case, the problem can still be
solved using an enumerative approach based on the subdivision of the space induced by
the hyperplanes although it will be necessary to elaborate further on the computation of
shortest length paths traversing several regions.Note that the subdivision induced by an
arrangement of hyperplanes can be efficiently computed [11], although its complexity
is exponential in the dimension of the space. This topic will be the subject of a follow
up paper.
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